Phillips Academy, 180 Main St, Andover, MA, USA
*通讯作者:
Ethan Sun,单位:Phillips Academy, 80 Main St, Andover, MA, USA;
摘要
免疫疗法是癌症治疗的一个领域,它利用人体内置的防御系统来杀死患病细胞。癌症会营造一种免疫抑制性的肿瘤微环境以逃避检测,而免疫疗法正是试图纠正这种状态。纳米技术与这一目标完美契合,尤其在于它能够模拟或借鉴人体的内源性机制来开发有效的药物和递送系统。纳米医学建立在现有的免疫疗法技术之上,而这些技术过去一直存在治疗应答患者比例以及脱靶效应导致的全身毒性等问题。本综述概述了纳米技术在免疫疗法主要分支领域的现有应用,阐明了它们的优势,并提供了增强抗肿瘤效果的新型平台的实例。癌症一词涵盖了一系列疾病,这些疾病是由于细胞生长和分裂的正常调控被破坏,从而产生大量不受控制地增殖的癌细胞。癌细胞通常表现出易出错的复制和DNA修复机制,因此会快速进化。有利突变使癌症能够绕过人体的防御机制,这使得这种疾病尤其难以治愈[1]。事实上,仅在2020年,癌症就夺走了约990万人的生命[2]。
关键词: 纳米技术;癌症免疫治疗
Abstract
Immunotherapy is a field of cancer treatment which uses the body’s built-in defense system as a means of killing diseased cells. Cancers foster an immunosupressive tumor microenvironment in order to evade detection, a state that immunotherapy seeks to rectify. Nanotechnology pairs well with this goal, especially in its ability to mimic or borrow from the body’s endogenous mechanisms to develop effective drugs and delivery systems. Nanomedicine builds upon existing immunotherapy techniques, which have in the past experienced issues in the proportion of patients that respond to treatment and the systemic toxicity that follows from their off-target effects. This review surveys existing applications of nanotechnology to major branches of immunotherapy, elucidating their advantages and providing examples of novel platforms that enhance antitumor effects. The term cancer describes a broad range of diseases in which normal regulation of cell growth and division is disrupted, producing a population of cancerous cells that proliferate uncontrollably. Cancer cells often display error-prone replication and DNA repair mechanisms, evolving rapidly as a result. Advantageous mutations allow cancer to adapt around the body’s defense mechanisms, making the disease especially hard to cure[1]. Indeed, cancer claimed an estimated 9.9 million lives in the year 2020 alone [2].
Key words: Nanotechnology; Cancer immunotherapeutics
参考文献 References
[1] Puleo, J., & Polyak, K. (2022). A Darwinian perspective on tumor immune evasion. BiochimicaEtBiophysicaActa (BBA) - Reviews on Cancer, 1877(1), 188671. https://doi.org/10.1016/j.bbcan.2021.188671.
[2] Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778-789. https://doi.org/10.1002/ijc.33588.
[3] Waldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nature Reviews Immunology, 20, 651-668. https://doi.org/10.1038/s41577-020-0306-5.
[4] Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162-163. https://doi.org/10.1038/318162a0.
[5] Bhushan, B. (Ed.). (2010). Springer Handbook of Nanotechnology. Springer Handbooks. https://doi.org/10.1007/978-3-642-02525-9.