参考文献 References
[1] Desai, T. A., Hansford, D. J., Kulinsky, L., Nashat, A. H., Rasi, G., Tu, J., ... and Ferrari, M. (1999). Nanopore technology for biomedical applications. Biomedical Microdevices, 2(1), 11-40.
[2] Cressiot, B., Bacri, L., and Pelta, J. (2020). The promise of nanopore technology: Advances in the discrimination of protein sequences and chemical modifications. Small Methods, 4(11), 2000090.
[3] Aksimentiev, A., Brunner, R. K., Cruz-Chu, E., Comer, J., and Schulten, K. (2009). Modeling transport through synthetic nanopores. IEEE Nanotechnology Magazine, 3(1), 20-28.
[4] Adiga, S. P., Jin, C., Curtiss, L. A., Monteiro‐Riviere, N. A., and Narayan, R. J. (2009). Nanoporous membranes for medical and biological applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(5), 568-581.
[5] Robertson, J. W. and Reiner, J. E. (2018). The utility of nanopore technology for protein and peptide sensing. Proteomics, 18(18), 1800026.
[6] Yin, Y. D., Zhang, L., Leng, X. Z., and Gu, Z. Y. (2020). Harnessing biological nanopore technology to track chemical changes. TrAC Trends in Analytical Chemistry, 116091.
[7] Discher, D. E. and Ahmed, F. (2006). Polymersomes. Annu. Rev. Biomed. Eng., 8, 323-341.
[8] Lee, J. S. and Feijen, J. (2012). Polymersomes for drug delivery: design, formation and characterization. Journal of Controlled Release, 161(2), 473-483.
[9] Guo, L. J. (2007). Nanoimprint lithography: methods and material requirements. Advanced Materials, 19(4), 495-513.
[10] Zankovych, S., Hoffmann, T., Seekamp, J., Bruch, J. U., and Torres, C. S. (2001). Nanoimprint lithography: challenges and prospects. Nanotechnology, 12(2), 91.
[11] Chou, S. Y., Krauss, P. R., and Renstrom, P. J. (1996). Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14(6), 4129-4133.
[12] Pawar, P. V., Gohil, S. V., Jain, J. P., and Kumar, N. (2013). Functionalized polymersomes for biomedical applications. Polymer Chemistry, 4(11), 3160-3176.
[13] Guan, L., Rizzello, L., and Battaglia, G. (2015). Polymersomes and their applications in cancer delivery and therapy. Nanomedicine, 10(17), 2757-2780.
[14] Robertson, J. D., Yealland, G., Avila-Olias, M., Chierico, L., Bandmann, O., Renshaw, S. A., and Battaglia, G. (2014). pH-sensitive tubular polymersomes: formation and applications in cellular delivery. ACS nano, 8(5), 4650-4661.
[15] Iqbal, S., Blenner, M., Alexander-Bryant, A., and Larsen, J. (2020). Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: from design to therapeutic applications. Biomacromolecules, 21(4), 1327-1350.
[16] de Gennes, P. G. (1999). Flexible polymers in nanopores. Polymers in Confined Environments, 91-105.
[17] Wang, P., Wang, M., Liu, F., Ding, S., Wang, X., Du, G., ... and Wang, Y. (2018). Ultrafast ion sieving using nanoporous polymeric membranes. Nature communi-cations, 9(1), 1-9.
[18] Notario, B., Pinto, J., and Rodriguez-Perez, M. A. (2016). Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 78, 93-139.
[19] Adiga, S. P., Curtiss, L. A., Elam, J. W., Pellin, M. J., Shih, C. C., Shih, C. M., ... and Narayan, R. J. (2008). Nanoporous materials for biomedical devices. Jom, 60(3), 26-32.
[20] Gonsalves, K., Halberstadt, C., Laurencin, C. T., and Nair, L. (Eds.). (2007). Biomedical nanostructures. John Wiley & Sons.
[21] Lee, L. J. (2006). Polymer nanoengineering for biomedical applications. Annals of Biomedical Engineering, 34(1), 75-88.
[22] Nair, S. S., Mishra, S. K., and Kumar, D. (2019). Recent progress in conductive polymeric materials for biomedical applications. Polymers for Advanced Technologies, 30(12), 2932-2953.
[23] Guan, J., He, H., Yu, B., and Lee, L. J. (2007). Polymeric nanoparticles and nanopore membranes for controlled drug and gene delivery. Biomedical Nanostructures, 115-137.
[24] Sharma, R., Geranpayehvaghei, M., Ejeian, F., Razmjou, A., and Asadnia, M. (2021). Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta, 122815.
[25] Jeon, G., Yang, S. Y., and Kim, J. K. (2012). Functional nanoporous membranes for drug delivery. Journal of Materials Chemistry, 22(30), 14814-14834.
[26] Mabrouk, M., Rajendran, R., Soliman, I. E., Ashour, M. M., Beherei, H. H., Tohamy, K. M., ... and Das, D. B. (2019). Nanoparticle-and nanoporous-membrane-mediated delivery of therapeutics. Pharmaceutics, 11(6), 294.
[27] Haidary, S. M., Corcoles, E. P., and Ali, N. K. (2012). Nanoporous silicon as drug delivery systems for cancer therapies. Journal of Nanomaterials, 2012.
[28] Ashley, C. E., Carnes, E. C., Phillips, G. K., Padilla, D., Durfee, P. N., Brown, P. A., ... and Brinker, C. J. (2011). The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Materials, 10(5), 389-397.
[29] Jackson, E. A. and Hillmyer, M. A. (2010). Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano, 4(7), 3548-3553.
[30] Paliwal, R., Babu, R. J., and Palakurthi, S. (2014). Nanomedicine scale-up technologies: feasibilities and challenges. Aaps Pharmscitech, 15(6), 1527-1534.
[31] Cai, P., Leow, W. R., Wang, X., Wu, Y. L., and Chen, X. (2017). Programmable nano-bio interfaces for functional biointegrated devices. Advanced Materials, 29(26), 1605529.
[32] Vijayan, V., Uthaman, S., and Park, I. K. (2018). Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer theragnostics. Polymers, 10(9), 983.