期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Nanoengineering and Nanosystems. 2025; 1: (1) ; 27-29 ; DOI: 10.12208/j.nn.20250004.

Nanopore technology
纳米孔技术

作者: Nida Tabassum Khan *

Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Takatu Campus, Airport Road, Quetta, Balochistan, Pakistan

*通讯作者: Nida Tabassum Khan,单位:Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Takatu Campus, Airport Road, Quetta, Balochistan, Pakistan;

发布时间: 2025-07-30 总浏览量: 154

摘要

聚合物纳米孔对治疗公司大有裨益。它们提供有效的治疗和诊断特性。它们尺寸更小,成本效益更高。它们可用于治疗脑部疾病、眼部疾病以及其他目前无法治愈的疾病,未来可以通过聚合物纳米孔进行治疗。实验已在模型生物体上进行,结果可靠。除了干细胞之外,这项技术还可以彻底改变治疗公司。纳米孔技术展现出创新应用,具有灵活的信息吞吐量。该技术不仅应用于临床科学,还为环境清洁和保护提供了潜力。例如在水处理、污泥灭活过程、固体废物分离、过滤技术等中。纳米孔被描述为细胞或合成膜上的微小孔,用于在细胞内部区室之间以及细胞外环境和细胞本身之间识别和运输离子/分子。此外,DNA测序中的纳米孔技术很好地体现了当今生化分子技术的进步。

关键词: 生物分子;聚合物;配体;生物传感;药物;半乳糖

Abstract

Polymeric nanopores can be highly beneficial for therapeutic companies. They provide effective treatments and diagnostic characteristics. They are smaller in size, can be cost effective. They can be used to treat brain disorders, ocular diseases and other such diseases that are incurable now, can be treated with polymeric nanopores in future. The experiments are conducted on model organisms, showed reliable outcome. Other than stem cells, this technique can revolutionize the therapeutic companies. Nanopore technology displayed innovative applications with adaptable information throughput. This technology is not only utilized in clinical sciences but it also offers the potential for environmental clean-up and conservation such as in water treatment, sludge inactivation process, separation of solid wastes, in filtration techniques etc. Nanopores are described as tiny holes in cellular or synthetic membranes used for recognition and transport of ions/molecules between compartments within the cell, as well as between the extracellular environment and the cell itself. Furthermore, nanopore technology in DNA sequencing provides a good representation of present-day advancement in biochemical molecular techniques.

Key words: Biomolecules; Polymeric; Ligand; Biosensing; Pharmaceuticals; Galactose

参考文献 References

[1] Desai, T. A., Hansford, D. J., Kulinsky, L., Nashat, A. H., Rasi, G., Tu, J., ... and Ferrari, M. (1999). Nanopore technology for biomedical applications. Biomedical Microdevices, 2(1), 11-40.

[2] Cressiot, B., Bacri, L., and Pelta, J. (2020). The promise of nanopore technology: Advances in the discrimination of protein sequences and chemical modifications. Small Methods, 4(11), 2000090.

[3] Aksimentiev, A., Brunner, R. K., Cruz-Chu, E., Comer, J., and Schulten, K. (2009). Modeling transport through synthetic nanopores. IEEE Nanotechnology Magazine, 3(1), 20-28.

[4] Adiga, S. P., Jin, C., Curtiss, L. A., Monteiro‐Riviere, N. A., and Narayan, R. J. (2009). Nanoporous membranes for medical and biological applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(5), 568-581.

[5] Robertson, J. W. and Reiner, J. E. (2018). The utility of nanopore technology for protein and peptide sensing. Proteomics, 18(18), 1800026.

[6] Yin, Y. D., Zhang, L., Leng, X. Z., and Gu, Z. Y. (2020). Harnessing biological nanopore technology to track chemical changes. TrAC Trends in Analytical Chemistry, 116091.

[7] Discher, D. E. and Ahmed, F. (2006). Polymersomes. Annu. Rev. Biomed. Eng., 8, 323-341.

[8] Lee, J. S. and Feijen, J. (2012). Polymersomes for drug delivery: design, formation and characterization. Journal of Controlled Release, 161(2), 473-483.

[9] Guo, L. J. (2007). Nanoimprint lithography: methods and material requirements. Advanced Materials, 19(4), 495-513.

[10] Zankovych, S., Hoffmann, T., Seekamp, J., Bruch, J. U., and Torres, C. S. (2001). Nanoimprint lithography: challenges and prospects. Nanotechnology, 12(2), 91.

[11] Chou, S. Y., Krauss, P. R., and Renstrom, P. J. (1996). Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14(6), 4129-4133.

[12] Pawar, P. V., Gohil, S. V., Jain, J. P., and Kumar, N. (2013). Functionalized polymersomes for biomedical applications. Polymer Chemistry, 4(11), 3160-3176.

[13] Guan, L., Rizzello, L., and Battaglia, G. (2015). Polymersomes and their applications in cancer delivery and therapy. Nanomedicine, 10(17), 2757-2780.

[14] Robertson, J. D., Yealland, G., Avila-Olias, M., Chierico, L., Bandmann, O., Renshaw, S. A., and Battaglia, G. (2014). pH-sensitive tubular polymersomes: formation and applications in cellular delivery. ACS nano, 8(5), 4650-4661.

[15] Iqbal, S., Blenner, M., Alexander-Bryant, A., and Larsen, J. (2020). Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: from design to therapeutic applications. Biomacromolecules, 21(4), 1327-1350.

[16] de Gennes, P. G. (1999). Flexible polymers in nanopores. Polymers in Confined Environments, 91-105.

[17] Wang, P., Wang, M., Liu, F., Ding, S., Wang, X., Du, G., ... and Wang, Y. (2018). Ultrafast ion sieving using nanoporous polymeric membranes. Nature communi-cations, 9(1), 1-9.

[18] Notario, B., Pinto, J., and Rodriguez-Perez, M. A. (2016). Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 78, 93-139.

[19] Adiga, S. P., Curtiss, L. A., Elam, J. W., Pellin, M. J., Shih, C. C., Shih, C. M., ... and Narayan, R. J. (2008). Nanoporous materials for biomedical devices. Jom, 60(3), 26-32.

[20] Gonsalves, K., Halberstadt, C., Laurencin, C. T., and Nair, L. (Eds.). (2007). Biomedical nanostructures. John Wiley & Sons.

[21] Lee, L. J. (2006). Polymer nanoengineering for biomedical applications. Annals of Biomedical Engineering, 34(1), 75-88.

[22] Nair, S. S., Mishra, S. K., and Kumar, D. (2019). Recent progress in conductive polymeric materials for biomedical applications. Polymers for Advanced Technologies, 30(12), 2932-2953.

[23] Guan, J., He, H., Yu, B., and Lee, L. J. (2007). Polymeric nanoparticles and nanopore membranes for controlled drug and gene delivery. Biomedical Nanostructures, 115-137.

[24] Sharma, R., Geranpayehvaghei, M., Ejeian, F., Razmjou, A., and Asadnia, M. (2021). Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta, 122815.

[25] Jeon, G., Yang, S. Y., and Kim, J. K. (2012). Functional nanoporous membranes for drug delivery. Journal of Materials Chemistry, 22(30), 14814-14834.

[26] Mabrouk, M., Rajendran, R., Soliman, I. E., Ashour, M. M., Beherei, H. H., Tohamy, K. M., ... and Das, D. B. (2019). Nanoparticle-and nanoporous-membrane-mediated delivery of therapeutics. Pharmaceutics, 11(6), 294.

[27] Haidary, S. M., Corcoles, E. P., and Ali, N. K. (2012). Nanoporous silicon as drug delivery systems for cancer therapies. Journal of Nanomaterials, 2012.

[28] Ashley, C. E., Carnes, E. C., Phillips, G. K., Padilla, D., Durfee, P. N., Brown, P. A., ... and Brinker, C. J. (2011). The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Materials, 10(5), 389-397.

[29] Jackson, E. A. and Hillmyer, M. A. (2010). Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano, 4(7), 3548-3553.

[30] Paliwal, R., Babu, R. J., and Palakurthi, S. (2014). Nanomedicine scale-up technologies: feasibilities and challenges. Aaps Pharmscitech, 15(6), 1527-1534.

[31] Cai, P., Leow, W. R., Wang, X., Wu, Y. L., and Chen, X. (2017). Programmable nano-bio interfaces for functional biointegrated devices. Advanced Materials, 29(26), 1605529.

[32] Vijayan, V., Uthaman, S., and Park, I. K. (2018). Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer theragnostics. Polymers, 10(9), 983.

引用本文

NidaTabassumKhan, 纳米孔技术[J]. 纳米工程与纳米系统, 2025; 1: (1) : 27-29.