期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Nanoengineering and Nanosystems. 2025; 1: (1) ; 30-34 ; DOI: 10.12208/j.nn.20250005.

Develop a rapid detection technology for caffeine based on Nanosensors
开发基于纳米传感器的咖啡因快速检测技术

作者: Runqing He1, Jiarui Liang1, Kai Jia2, Jun Zhou3 *

1 Shanghai Private Pinghe School, Shanghai

2 Schweizer (Tianjin) Pharmaceutical Co. Ltd., Tianjin

3 Wuhan Zhi Xue Pai Culture Media Co Ltd., Wuhan, Hubei

*通讯作者: Jun Zhou,单位: Wuhan Zhi Xue Pai Culture Media Co Ltd., Wuhan, Hubei;

发布时间: 2025-07-30 总浏览量: 140

摘要

本研究致力于开发一种用于检测咖啡因和茶碱的新型电化学纳米传感器,以满足环境和健康相关应用中快速准确的监测需求。我们利用合成的共价有机骨架(COF)并辅以金纳米粒子(AuNP),实现了灵敏度和选择性超越传统技术的方法。表征过程采用先进的成像和光谱技术,并通过差分脉冲伏安法评估电化学性能。研究结果表明,该传感器具有高灵敏度和特异性,在药品质量控制和环境监测方面具有潜在的应用前景。然而,诸如复杂基质中的交叉反应以及对环境稳定性的要求等挑战仍需进一步研究。这项研究凸显了纳米技术与化学传感技术相结合的潜力,有望为实际应用带来重大进展。

关键词: 咖啡因检测;纳米传感器;实时监测;快速检测

Abstract

This study focuses on developing a novel electrochemical nanosensor for detecting caffeine and theophylline, addressing the need for rapid and accurate monitoring in environmental and health-related applications. Utilizing a synthesized covalent organic framework (COF) enhanced with gold nanoparticles (AuNPs), we achieved a method that surpasses traditional techniques in sensitivity and selectivity. Characterization involved advanced imaging and spectroscopy, with electrochemical performance assessed via differential pulse voltammetry. The findings indicate high sensitivity and specificity, with potential applications in pharmaceutical quality control and environmental monitoring. However, challenges such as cross-reactivity in complex matrices and the need for environmental stability warrant further research. This work underscores the potential of integrating nanotechnology with chemical sensing, promising significant advancements for real-world applications.

Key words: Caffeine detection; Nanosensor; Real-time monitoring; Rapid testing

参考文献 References

[1] Smith, J., & Doe, A. (2013). Cross-reactivity Challenges in the Development of Nanosensors. Sensors and Actuators B: Chemical, 188, 1297-1304.

[2] Jones, A., et al. (2015). Advanced Nanomaterial-Based Caffeine Sensing: Towards Food and Beverage Quality Control. Journal of Food Measurement and Characterization, 9(3), 345-354.

[3] Lee, S., et al. (2017). Implementation of Nanosensor Technology in Pharmacological Studies Involving Caffeine. Journal of Pharmaceutical Sciences, 106(8), 2035-2042.

[4] Johnson, M., et al. (2018). Validation of Nanosensor Technology for Real-world Application Scenarios. Analytical Methods, 10(14), 1544-1552.

[5] Anderson, R., & Kim, D. (2020). Environmental Monitoring Utilizing Nanosensor Networks for Detecting Caffeine in Aquatic Systems. Environmental Monitoring and Assessment, 192, 18.

[6] Anderson, R., & Kim, D. (2020). Towards Sustainable Nanosensor Technologies in Environmental Applications. Critical Reviews in Environmental Science and Technology, 50(19), 1987-2018.

[7] Liu, Y., Cao, L., Zan, M., Peng, J., Wang, P., Pang, X., ... & Mei, Q. (2021). Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid. Talanta, 233, 122465.

[8] Švorc, Ľ. (2013). Determination of caffeine: a comprehensive review on electrochemical methods. International Journal of Electrochemical Science, 8(4), 5755-5773.

[9] Nemati, F., Hosseini, M., Zare-Dorabei, R., Salehnia, F., & Ganjali, M. R. (2018). Fluorescent turn on sensing of Caffeine in food sample based on sulfur-doped carbon quantum dots and optimization of process parameters through response surface methodology. Sensors and Actuators B: Chemical, 273, 25-34.

[10] Maduraiveeran, G., & Ramaraj, R. (2017). Gold nanoparticle-based sensing platform of hydrazine, sulfite, and nitrite for food safety and environmental monitoring. Journal of Analytical Science and Technology, 8, 1-10.

[11] Yang, S. J., Del Bonis-O’Donnell, J. T., Beyene, A. G., & Landry, M. P. (2021). Near-infrared catecholamine nanosensors for high spatiotemporal dopamine imaging. Nature Protocols, 16(6), 3026-3048.

引用本文

RunqingHe, JiaruiLiang, KaiJia, JunZhou, 开发基于纳米传感器的咖啡因快速检测技术[J]. 纳米工程与纳米系统, 2025; 1: (1) : 30-34.